If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=179-16t^2
We move all terms to the left:
0-(179-16t^2)=0
We add all the numbers together, and all the variables
-(179-16t^2)=0
We get rid of parentheses
16t^2-179=0
a = 16; b = 0; c = -179;
Δ = b2-4ac
Δ = 02-4·16·(-179)
Δ = 11456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11456}=\sqrt{64*179}=\sqrt{64}*\sqrt{179}=8\sqrt{179}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{179}}{2*16}=\frac{0-8\sqrt{179}}{32} =-\frac{8\sqrt{179}}{32} =-\frac{\sqrt{179}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{179}}{2*16}=\frac{0+8\sqrt{179}}{32} =\frac{8\sqrt{179}}{32} =\frac{\sqrt{179}}{4} $
| 4x+12=-3x-6x | | 6p+18=60 | | 4100=0.03(y) | | -11+20s=18s+11 | | 199=147-w | | 3t+9=-5+t | | 625(2)=x | | (5x-2)+(2x+1)+62=180 | | x(.8)=500 | | 5f+2+6f=8+10f | | −2−5a−8a=−15 | | -3+7r=3r-7 | | -8+4d=8+6d | | 17=-10x-13 | | 3j=-5+2j | | -8b=2-7b | | 3-10f=9-7f | | (5x+5)+(3x-1)=180 | | 18q+25=11q–10 | | 42x+49=29x+9 | | u=2u-6 | | 7y17-12y=-38 | | 12x–4x–11–5x=25 | | 0.240x/(100-x)(0.100)=0.6309573445 | | −2(x+1)=x−3x−2 | | x(0.240)/(100-x)(0.100)=0.6309573445 | | 2×3+3y=0 | | 5z=7z+2 | | 0.6w=048 | | -7g=6g-9 | | 9/7x+7-3/x+1+3/7=0 | | 7/10x=8 |